General SQL Parser Architecture¶
Overview¶
The General SQL Parser (GSP) is a comprehensive Java-based SQL parsing library that supports 25+ database vendors. It follows a multi-layered architecture designed for extensibility, accuracy, and performance in parsing complex SQL statements across different database dialects.
High-Level Architecture¶
graph TB
subgraph "Input Layer"
A[SQL Text/File/Stream]
end
subgraph "Lexical Analysis Layer"
B[Database-Specific Lexers]
B1[TLexerOracle]
B2[TLexerMssql]
B3[TLexerPostgresql]
B4[TLexer... 25+ databases]
end
subgraph "Syntax Analysis Layer"
C[Database-Specific Parsers]
C1[TParserOracle]
C2[TParserMssql]
C3[TParserPostgresql]
C4[TParser... 25+ databases]
end
subgraph "AST Layer"
D[Abstract Syntax Tree]
D1[Statement Nodes]
D2[Expression Nodes]
D3[Table Reference Nodes]
D4[Clause Nodes]
end
subgraph "Semantic Analysis Layer"
E[Resolvers & Analyzers]
E1[Name Resolution]
E2[Type Resolution]
E3[Scope Analysis]
E4[Data Flow Analysis]
end
subgraph "Output Layer"
F[Applications]
F1[SQL Formatting]
F2[Data Lineage]
F3[SQL Translation]
F4[Impact Analysis]
end
A --> B
B --> C
C --> D
D --> E
E --> F
style A fill:#e1f5fe
style D fill:#f3e5f5
style F fill:#e8f5e8
Core Components¶
1. Main Parser Engine (TGSqlParser
)¶
The TGSqlParser
class serves as the primary entry point and orchestrator for the entire parsing process.
Key Responsibilities: - Database vendor detection and parser selection - Input source management (text, file, stream) - Tokenization coordination - Parse tree construction - Error handling and reporting
Usage Pattern:
1 2 3 4 5 6 7 8 9 10 |
|
2. Database-Specific Lexers¶
Each database vendor has a dedicated lexer for tokenization that understands vendor-specific syntax.
Architecture Pattern:
1 2 3 4 5 6 7 |
|
Features: - Vendor-specific keyword recognition - Database-specific literal formats - Custom operator handling - Comment syntax variations
3. Database-Specific Parsers¶
Grammar-based parsers that understand the complete SQL syntax for each database vendor.
Parser Hierarchy:
1 2 3 4 5 6 |
|
Capabilities: - Complete SQL grammar coverage - Vendor-specific extensions - Stored procedure parsing - DDL/DML/DCL statement support
4. Abstract Syntax Tree (AST) System¶
The AST system provides a unified representation of SQL statements across all database vendors.
Node Hierarchy¶
graph TD
A[TParseTreeNode] --> B[TCustomSqlStatement]
A --> C[TExpression]
A --> D[TTable]
A --> E[TObjectName]
A --> F[TResultColumn]
B --> B1[TSelectSqlStatement]
B --> B2[TInsertSqlStatement]
B --> B3[TUpdateSqlStatement]
B --> B4[TDeleteSqlStatement]
B --> B5[TCreateTableSqlStatement]
C --> C1[Function Calls]
C --> C2[Arithmetic Operations]
C --> C3[Logical Conditions]
C --> C4[Subqueries]
D --> D1[Base Tables]
D --> D2[Derived Tables]
D --> D3[Table Functions]
D --> D4[JOIN Expressions]
style A fill:#ffeb3b
style B fill:#4caf50
style C fill:#2196f3
style D fill:#ff9800
Key Node Types¶
Node Type | Purpose | Key Classes |
---|---|---|
Statements | SQL statement representations | TSelectSqlStatement , TInsertSqlStatement , TUpdateSqlStatement |
Expressions | SQL expressions and conditions | TExpression , TFunctionCall , TConstant |
Tables | Table references and sources | TTable , TJoinExpr , TFromClause |
Names | Identifiers and object names | TObjectName , TObjectNameList |
Clauses | SQL clause components | TWhereClause , TOrderByClause , TGroupByClause |
5. Semantic Analysis System¶
Post-parsing analysis components that provide advanced SQL understanding.
Resolver Components¶
graph LR
A[Raw AST] --> B[Name Resolution]
B --> C[Type Resolution]
C --> D[Scope Analysis]
D --> E[Data Flow Analysis]
E --> F[Enriched AST]
subgraph "Resolver Classes"
G[TAttributeResolver]
H[TRelationResolver]
I[TSQLResolver]
J[TMetadataCollector]
end
B -.-> G
C -.-> H
D -.-> I
E -.-> J
Resolver Capabilities: - Name Resolution: Links column references to their source tables - Type Resolution: Determines data types of expressions - Scope Analysis: Handles nested scopes and visibility - Metadata Integration: Connects with external schema information
6. SQL Environment System (sqlenv
)¶
Manages metadata and schema information for enhanced analysis.
Components:
- TSQLEnv
: Main environment container
- TSQLTable
: Table metadata representation
- TSQLColumn
: Column metadata representation
- TSQLSchema
: Schema/database organization
Integration Pattern:
1 2 3 4 5 6 7 |
|
Processing Flow¶
Phase 1: Lexical Analysis (Tokenization)¶
flowchart LR
A[SQL Text] --> B[Character Stream]
B --> C[Token Recognition]
C --> D[Token Classification]
D --> E[TSourceTokenList]
subgraph "Token Types"
F[Keywords]
G[Identifiers]
H[Literals]
I[Operators]
J[Whitespace]
K[Comments]
end
D --> F
D --> G
D --> H
D --> I
D --> J
D --> K
Key Features: - Database-specific keyword recognition - Unicode support for international characters - Position tracking for error reporting - Comment preservation for formatting
Phase 2: Syntax Analysis (Parsing)¶
flowchart TD
A[Token Stream] --> B[Grammar Rules]
B --> C[Recursive Descent Parsing]
C --> D{Syntax Valid?}
D -->|Yes| E[Build AST Nodes]
D -->|No| F[Generate Syntax Error]
E --> G[Complete AST]
F --> H[Error Recovery]
H --> I[Continue Parsing]
I --> C
Parse Strategy: - Recursive Descent: Top-down parsing approach - Error Recovery: Continues parsing after syntax errors - Multi-Statement: Handles scripts with multiple statements - Stored Procedures: Supports complex procedural SQL
Phase 3: Semantic Analysis¶
flowchart LR
A[Raw AST] --> B[Name Resolution]
B --> C[Type Checking]
C --> D[Scope Validation]
D --> E[Relationship Building]
E --> F[Enriched AST]
subgraph "Analysis Types"
G[Table-Column Links]
H[Function Validation]
I[Data Type Inference]
J[Dependency Tracking]
end
B --> G
C --> H
D --> I
E --> J
Database Vendor Support¶
Multi-Vendor Architecture¶
The GSP architecture is designed for extensive database support through a plugin-like approach:
Category | Databases | Key Features |
---|---|---|
Traditional RDBMS | Oracle, SQL Server, MySQL, PostgreSQL, DB2 | Complete SQL standard support |
Cloud Data Warehouses | BigQuery, Redshift, Snowflake, Databricks | Modern SQL extensions |
Big Data | Hive, Spark SQL, Impala, Presto | Distributed query support |
Specialized | Teradata, Vertica, Netezza, SAP HANA | Vendor-specific optimizations |
Vendor-Specific Features¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
Data Lineage and Flow Analysis¶
DataFlowAnalyzer Architecture¶
graph TB
subgraph "Input Analysis"
A[SQL Statements]
B[Metadata Schema]
C[Configuration]
end
subgraph "Processing Engine"
D[Statement Analysis]
E[Column Mapping]
F[Transformation Tracking]
G[Dependency Resolution]
end
subgraph "Output Generation"
H[Column Lineage]
I[Table Dependencies]
J[Data Flow Graph]
K[Impact Analysis]
end
A --> D
B --> E
C --> F
D --> H
E --> I
F --> J
G --> K
style D fill:#e3f2fd
style H fill:#f1f8e9
Capabilities: - Column-Level Lineage: Traces data flow to individual columns - Cross-Database: Handles ETL across different database vendors - Complex Transformations: Supports joins, aggregations, window functions - View Resolution: Expands views to underlying table references
Visitor Pattern Implementation¶
The GSP uses the Visitor pattern for AST traversal and analysis:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
Advantages¶
1. Comprehensive Database Support¶
- 25+ Database Vendors: Broadest coverage in the industry
- Accurate Parsing: Vendor-specific grammars ensure high accuracy
- Regular Updates: Keeps pace with database evolution
2. Rich AST Representation¶
- Detailed Structure: Preserves all SQL syntax elements
- Type Safety: Strong typing for all node types
- Extensible: Easy to add new node types
3. Advanced Analysis Capabilities¶
- Semantic Analysis: Goes beyond syntax to understand meaning
- Data Lineage: Column-level tracking across complex transformations
- Impact Analysis: Determines effects of schema changes
4. Performance Optimization¶
- Efficient Parsing: Optimized recursive descent parsing
- Memory Management: Careful object lifecycle management
- Parallel Processing: Support for concurrent analysis
5. Enterprise Features¶
- Error Recovery: Continues parsing after syntax errors
- Unicode Support: International character handling
- API Stability: Backward compatibility maintenance
Disadvantages¶
1. Complexity¶
- Large Codebase: 25+ database parsers create significant complexity
- Learning Curve: Extensive API requires time to master
- Memory Usage: Large AST structures can consume significant memory
2. Maintenance Overhead¶
- Multiple Grammars: Each database requires separate grammar maintenance
- Vendor Updates: Must track changes across all supported databases
- Testing Complexity: Requires comprehensive test coverage for all vendors
3. Performance Considerations¶
- Parse Time: Complex SQL can take significant time to parse
- Memory Footprint: Large SQL scripts generate substantial AST structures
- Cold Start: Initial parser creation has setup overhead
4. Licensing and Cost¶
- Commercial License: Not free for commercial use
- Feature Restrictions: Some advanced features require higher license tiers
- Support Dependency: Complex issues may require vendor support
Use Case Patterns¶
1. SQL Analysis and Validation¶
1 2 3 4 5 6 7 8 9 10 |
|
2. Data Lineage Analysis¶
1 2 3 4 5 6 7 8 9 10 11 |
|
3. SQL Transformation¶
1 2 3 4 5 6 7 8 9 10 11 |
|
4. Schema Impact Analysis¶
1 2 3 4 5 6 7 8 9 10 |
|
Best Practices¶
1. Parser Configuration¶
1 2 3 4 5 6 7 8 9 10 11 |
|
2. Memory Management¶
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
3. Error Handling¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
Conclusion¶
The General SQL Parser represents a sophisticated and comprehensive solution for SQL analysis across multiple database vendors. Its multi-layered architecture provides both flexibility and accuracy, making it suitable for enterprise applications requiring deep SQL understanding.
While the complexity and licensing costs may be barriers for some use cases, the breadth of database support and advanced analytical capabilities make it a powerful tool for applications involving SQL migration, data lineage analysis, impact assessment, and cross-database SQL development.
The architecture's emphasis on extensibility and accuracy positions it well for handling the evolving landscape of SQL databases and the increasing complexity of modern data processing workflows.